Mike Gordon

Department of Zoology

Phone: 604 827-4854

Web pages:
Lab webpage



  • B.Sc. - McMaster University
  • Ph.D. - Stanford University
  • Post-doc - University of California, Berkeley


  • Drosophila melanogaster
  • Taste and feeding circuits
  • Circuit development

Research Interests

Neural circuits and behaviour

How brains process diverse sensory stimuli, form internal representations of the outside world, and generate appropriate behavioural action remain some of the great mysteries of biology.  Because the difficulty of the problem scales with the complexity of the nervous system, we’ve chosen to study it in an animal that uses only ~100,000 neurons (1 million times fewer than us) to generate a complex array of behaviours - the fruit fly Drosophila melanogaster.  The fly also offers a wide and ever-growing array of molecular and genetic tools to probe both the neural circuits and molecules underlying sensory processing and behaviour.  Understanding the fly’s brain will give insight into how circuits are organized and function in our own brains, and how evolution has sculpted solutions to common problems like how to locate food, decide what to eat, or find a mate.

Taste and feeding circuits

The taste system is particularly well-suited to studying how sensory information is translated into behaviour, in part because broad categories of tastes evoke very predictable, innate responses.  We can all appreciate the pleasure of tasting something sweet or the disgust upon biting into something intensely bitter (see this video of my dog discovering that not everything that smells appealing also tastes good).  These reactions play a vital role in ensuring our survival, as our sense of taste guides us towards nutritious foods and away from toxins.  Flies too, have innate reactions to specific tastes; when a fly tastes sugar with its legs (which house taste-sensitive neurons), it will extend its feeding structure called the proboscis in an attempt to initiate ingestion (video).  Moreover, the probability of this behaviour decreases with the addition of bitter compounds.  The Gordon lab takes advantage of the amazing genetic tools available in the fly to address the following question: how does the fly brain execute the simple yet exceedingly important decision of whether or not to eat?

See more at the Gordon lab homepage.

Selected Publications

Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, Jan YN.  (2009).  Control of postmating response in Drosophila females by internal sensory neurons.  Neuron 61(4): 519-26.

Gordon MD, Scott K.  (2009).  Motor control in a Drosophila taste circuit.  Neuron 61(3): 373-84.

Gordon MD, Manzo A, Scott K.  (2008).  Fly neurobiology: development and function of the brain. Meeting on the Neurobiology of Drosophila.  EMBO Rep. 9(3):239-42.

Gordon MD, Ayres JS, Schneider DS, Nusse R.  (2008). Pathogenesis of Listeria-infectedDrosophila wntD mutants is associated with elevated levels of the novel immunity geneedin.  PLoS Pathogens 4(7): e1000111.

Schneider DS, Ayers JS, Brandt SM, Costa A, Dionne MS, Gordon MD, Mayberry EM, Moule MG, Pham LN, Shirasu-Hiza MM.  (2007).  Drosophila eiger mutants are sensitive to extracellular pathogens.  PLoS Pathogens 3(3): e41.

Gordon MD and Nusse R.  (2006).   Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.   J. Biol. Chem. 281(32): 22429-33.

Gordon MD, Dionne MS, Schneider DS, Nusse R.  (2005).  WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity.  Nature 437(7059): 746-9.

Settle M, Gordon MD, Nadella M, Dankort D, Muller W, Jacobs JR.  (2003).  Genetic identification of effectors downstream of Neu (ErbB-2) autophosphorylation sites in aDrosophila model.  Oncogene 22(13): 1916-26.

Ko DC, Gordon MD, Jin JY, Scott MP.  (2001).  Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol Biol Cell. 12(3):601-14.

Lanoue BR, Gordon MD, Battye R, Jacobs JR.  (2000).  Genetic analysis of vein function in the Drosophila embryonic nervous system.  Genome 43(3):564-73.

Maduro MF, Gordon M, Jacobs R, Pilgrim DB.  (2000).  The UNC-119 family of neural proteins is functionally conserved between humans, Drosophila and C. elegans.  J Neurogenet. 13(4):191-212.